Fréquence des transits de Vénus.

Le 8 juin 2004 nous avons assisté à un événement exceptionnel à deux titres, sa rareté, et le profit que nos prédécesseurs ont su en tirer dans le passé, il y a seulement deux siècles, notamment pour la connaissance de l'unité astronomique (UA). Cette information était nécessaire pour savoir nous situer, non seulement dans le système solaire, mais aussi par rapport aux étoiles voisines. L'importance de cet étalon de mesure est du même ordre que celle de la constante de gravitation mesurée par Cavendish. Cette dernière s'est aussitôt appliquée à la loi de gravitation de Newton qui précédemment restait un concept théorique aux applications pratiques limitées.

De la même façon, les estimations de distances entre les corps célestes, planètes et étoiles proches étaient connues en mesure arbitraire, l'UA (abréviation d'Unité Astronomique symbolisant la distance Terre-Soleil), sans que l'on puisse avoir la moindre idée de ce qu'elles représentaient en absolu. Ainsi, savait-on que Mercure était trois fois plus proche du Soleil que la Terre et que Jupiter est 5 fois plus éloigné du Soleil que la Terre. Il est facile de comprendre que dès lors que l'on connaît la longueur de l'UA, en Km par exemple (150 millions), on calcule aisément la distance qui sépare chacune des planètes du Soleil. De la même façon, les mesures de triangulation dont l'objet est de déterminer la distance qui nous sépare des étoiles voisines deviennent des mesures « absolues ». Observant une étoile depuis la Terre à 6 mois d'intervalle, les angles formés par les lignes de visée et le diamètre de l'orbite terrestre joignant les deux points d'observation qui ne représente plus 2 UA mais 300 millions de Km donne une dimension pratique à la base du triangle d'observation. L'immensité de l'Univers commençait alors à se dévoiler.

À l'occasion du transit, appelé aussi passage, la presse s'est fait largement écho de l'apport des transits planétaires dans le passé, notamment les revues scientifiques. Les publications spécialisées en astronomie (notamment l'impressionnant ouvrage de Christophe Marlot: Les passages de Vénus, chez VUIBERT) se sont longuement étendues sur les méthodes de calcul conduisant à l'UA à partir de l'observation du transit, surtout en utilisant la méthode inventée par Haley dont la précision basée sur les différences de temps de transit selon le lieu d'observation semble simple à mettre en œuvre car ne nécessitant pas de grande compétence en astronomie de la part des observateurs mais simplement de la rigueur. Aussi, cet exposé porte sur un autre aspect relatif au transit de Vénus. Même la presse spécialisée a passé sous silence les raisons d'une fréquence apparemment chaotique de ces passages planétaires. Tout au plus trouve-t-on signalé de façon anecdotique que la fréquence des transits est espacée 121,5 ans, puis 8 ans, puis 105,5 ans et enfin, 8 ans avant de recommencer, donnant un cycle global de 243 ans. Pour corser le tout, certaines revues annoncent même que cette fréquence ne sera respectée que jusqu'en l'an 3000, ou qu'avant 1500 cette alternance était différente...

À la lecture de ces informations, on peut se demander si Vénus tourne bien sagement autour du Soleil comme on le croyait ou si elle zigzag sur son orbite, à moins qu'elle ne joue à saute-mouton. Bien sûr, il n'y a rien de désordonné dans la trajectoire de Venus, mais des phénomènes continus qui, par le lent décalage des temps, finissent par provoquer une sortie de la fenêtre d'observation devant laquelle elle passait régulièrement, jusqu'à ce que ce décalage continuant de s'accroître, elle finisse par repasser à nouveau devant la fenêtre après plusieurs décennies de discrétion. Ce sont des concomitances de cette nature qui laisse supposer des déplacements erratiques. La largeur de la fenêtre a donc son importance, comme la vitesse de dérive de la cause du décalage, et la vitesse de la planète.

Mais d'ores et déjà, remarquez que la différence entre 105,5 ans et 121,5 ans, les deux périodes les plus longues séparant deux passages consécutifs, est égale à 2 fois 8 ans.

Les conditions d'un transit.

Pour qu'un transit puisse se produire, il est nécessaire qu'un certain nombre de conditions soient réunies.

Pour pouvoir observer un passage de Vénus sur un fond solaire depuis la Terre, il faut que le lieu d'observation (la Terre), la planète en transit (Vénus), et le Soleil soient parfaitement alignés. Si le Soleil était réduit à la taille de la Terre ou de Vénus, ce serait totalement exact, mais, comme nous le verrons, le grand diamètre solaire ménage une certaine tolérance dans l'alignement, ce qui élargi la fenêtre de réalisation d'un point à une « certaine » surface.

S'agissant d'une planète plus proche du Soleil que ne l'est la Terre (on dit de Mercure et de vénus que ce sont des planètes inférieures, ou intérieures), Vénus doit être en conjonction inférieure, c'est-à-dire entre la Terre et le Soleil. Une planète inférieure peut occuper différentes positions représentées dans le schéma 1 ci-dessous

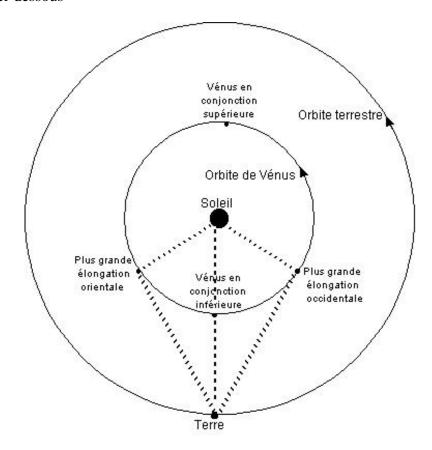
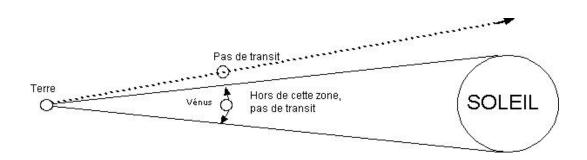



Schéma 1

Mais il ne suffit pas d'être en conjonction inférieure pour que se produise un transit. En effet, la situation de conjonction inférieure se produit régulièrement à une fréquence inférieure à deux ans puisque deux conjonctions inférieures sont séparées de 584 jours (terrestres).

Avec cette seule condition, les transits se concrétiseraient à la même fréquence, ce qui est loin d'être le cas. Et de fait, le transit impose que les trois astres soient dans le même plan, c'est-à-dire que la ligne de visée de l'observateur terrestre doit passer par vénus et le Soleil, voir le schéma 2 ci-dessous :

Schéma 2

Le plan de l'orbite de Vénus est incliné de 3° 23'sur celui de l'orbite terrestre et en combinant les deux vues précédentes nous obtenons la vue générale suivante sur laquelle on voit qu'il existe deux endroits possibles pour que les deux conditions soient réalisées :

- 1) conjonction inférieure;
- 2) même plan.

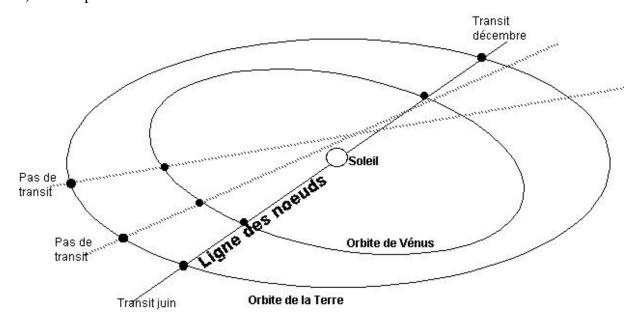


Schéma 3

Ces deux points des orbites sont traversés par un axe appelé ligne des nœuds, et en première approximation, il n'y a que si les deux planètes sont situées sur leur orbite à l'endroit précis où elles sont traversées par la ligne des nœuds qu'un transit peut avoir lieu. Si les positions étaient réduites à un point, le transit ne serait pratiquement jamais possible. Heureusement, il existe une marge de tolérance en raison de l'importance non négligeable de la taille du Soleil.

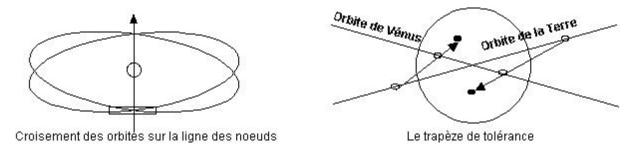


Schéma 4

L'ensemble du système est représenté sur le schéma 4 à gauche, avec un agrandissement de la zone intéressante, à droite. On peut voir que la surface apparente du Soleil permet d'observer une projection de Vénus sur le disque depuis le voisinage de la ligne des nœuds sur une certaine distance délimitée par un quadrilatère dont les sommets sont les limites extrêmes des positions permises pour Vénus et la Terre.

Ce sont les dimensions de ce quadrilatère qui donne la tolérance aux transits et également l'étrange distribution des périodes rapprochées de 8 ans entre les longues périodes centenaires des transits. Ce trapèze virtuel revêt donc une importance capitale pour la compréhension du phénomène d'asynchronisme.

On a vu qu'il ne suffisait pas que Vénus soit à la conjonction inférieure, mais que cette conjonction se produise lorsque les deux planètes sont à l'intérieur du quadrilatère. Devant entrer maintenant dans le domaine numérique pour aller plus loin, nous définissons le niveau de précision de nos calculs. Il n'est pas question ici de faire les calculs avec la précision de ceux qui sont faits par l'Institut de Mécanique Céleste mais de comprendre le mécanisme des phénomènes sur lesquels nous nous interrogeons grâce à un modèle simple. Une précision trop grossière ne nous permettrait pas de mettre en évidence le phénomène observé, et une précision trop fine est illusoire car nous allons faire abstraction de facteurs physiques qui introduisent une dérive supérieure au résultat de nos calculs (excentricité des orbites, avance des périhélies, influence des autres planètes, notamment de la Lune...). Nous pousserons tout de même le nombre de décimales car cet artifice sans intérêt pour le résultat va nous permettre d'apprécier visuellement certaines étapes importantes de la procédure.

Nous savons que la Terre boucle son orbite, avec un niveau de précision raisonnable, en 365,25 jours et que Vénus qui est plus rapide boucle la sienne en 224,7 jours (terrestres). Sans tenir compte de la position réelle des planètes, nous définissons l'instant T0 globalement à l'année 2004 pour laquelle nous savons qu'il y a eu un transit puisque nous l'avons observé. Cela signifie que Vénus était en conjonction inférieure et qu'elle était, comme la Terre dans la zone du quadrilatère au voisinage de la ligne des nœuds.

Cette situation se reproduira lorsque la Terre et Vénus auront effectué toutes les deux un nombre entier d'orbites. Or lorsque la terre a fait 1 orbite (en 1 an), Vénus à accompli 365,25 / 224,7 = 1,6255 de ses propres orbites. On voit que si la terre se retrouve au voisinage de la ligne des nœuds au même endroit que celui où elle se trouvait un an avant exactement, ce n'est pas le cas de Vénus qui se trouve à ce moment précis de l'autre côté du Soleil en ayant même dépassé un peu le point opposé correspondant à la conjonction supérieure.

Après deux années la Terre aura parcouru deux orbites complètes et vénus 2 * 1,6255 = 3,251 fois la sienne. Pour se retrouver ensemble (en conjonction inférieure) sur la ligne des nœuds, il faudrait que les deux planètes aient parcouru chacune un nombre entier d'orbites depuis le temps T0. Or la valeur fractionnaire de leur rapport de période rend cette coïncidence mathématiquement impossible (CF la troisième loi de Kepler), sans compter les perturbations d'origines diverses qui affectent la régularité des orbites planétaires. En revanche, la tolérance du quadrilatère discuté plus haut permet de s'en approcher suffisamment pour que des passages soient observables.

Il suffit de trouver un nombre d'années (donc un nombre d'orbites terrestres entières) qui totalise un nombre de jours sensiblement équivalent (à la tolérance près) à celui que produit un nombre entier d'orbites de Vénus multiplié par le nombre de jours de la période orbitale de Vénus (224,7). Ce genre de calcul est fastidieux, mais n'importe quel tableur va nous permettre de faire cela rapidement. Nous considérerons arbitrairement que si le rapport du nombre d'orbites vénusiennes au nombre entier d'orbites terrestre a sa partie fractionnaire qui commence par « 00 » nous nous trouvons dans le quadrilatère de tolérance. Nous découvrons rapidement que 8 orbites terrestres correspondent approximativement à 13 orbites vénusiennes. En effet, 8 * 1,6255 = 13,004 voir l'extrait tableur 1 cidessous. Les deux zéros à droite de la virgule permettent visuellement de déterminer les dates d'oppositions qui se produisent dans la zone du quadrilatère, donc les dates des transits aux restrictions et réserves près qui sont discutées ci-après.

Extrait tableur 1

La colonne de gauche séquence les années (nombre d'orbites complètes de la Terre)
La suivante est le produit de la durée d'une année terrestre par le nombre d'année sur la durée de l'année vénusienne. Les durées étant exprimées dans la même unité, par exemple les jours.
La troisième colonne est une réplique de la précédente qui facilite le repérage des nombres entiers d'orbites de Vénus avec la partie fractionnaire arrondie au centième, et égale à 00.

La quatrième est l'année calendaire.

La cinquième est un commentaire rappelant si c'est une année à transit, ou pas, c'est-à-dire si la partie fractionnaire est inférieure au centième ou pas.

0 Ori	gine de succession	des transit	: 2004	Transit
1	1,62550066755	1,63	2005	
2	3,25100133511	3,25	2006	
3	4,87650200267	4,88	2007	
4	6,50200267022	6,50	2008	
5	8,12750333778	8,13	2009	
6	9,75300400534	9,75	2010	
7	11,3785046729	11,38	2011	
8	13,0040053404	13,00	2012	Transit
9	14,629506008	14,63	2013	
10	16,2550066755	16,26	2014	
11	17,8805073431	17,88	2015	
12	19,5060080106	19,51	2016	
13	21,1315086782	21,13	2017	
14	22,7570093457	22,76	2018	
15	24,3825100133	24,38	2019	
16	26,0080106809	26,01	2020	Pas de transit
17	27,6335113484	27,63	2021	
18	29,259012016	29,26	2022	
19	30,8845126835	30,89	2023	
20	32,5100133511	32,51	2024	
21	34,1355140186	34,17	2025	
22	35,7610146862	35,76	2026	
23	37,3865153538	37,39	2027	
24	39,0120160213	39,01	2028	Pas de transit
25	40,6375166889	40,64	2029	
26	42,2630173564	42,26	2030	
27	43,888518024	43,89	2031	
28	45,5140186915	45,51	2032	
29	47,1395193591	47,14	2033	

On voit qu'après 2004, les conditions sont à nouveau réunies 8 ans plus tard en 2012.

On remarque cependant que si 2004 est considéré arbitrairement comme origine absolue avec les deux planètes parfaitement alignées sur la ligne des nœuds, en 2012 Vénus a tout de même pris une légère avance de 4 millièmes de son orbite par rapport à la Terre.

Huit ans plus tard, en 2020 cette avance s'est accumulée avec une valeur qui frise le centième, faisant ainsi sortir Vénus du quadrilatère permettant les transits, mais le ratant assurément de peu. Ensuite cette avance qui ne cesse de s'accroître empêchera tous les transits jusqu'à ce que, devenue suffisante elle atteindra à nouveau le quadrilatère.

Mais comme on peut le voir sur le schéma 3 et le schéma 4 de gauche, la ligne des nœuds coupe l'intersection des deux orbites à deux endroits correspondant chacun à un moment différent et opposé de la saisonnalité. Ayant concrétisé deux transits à 8 ans d'intervalle dans le même quadrilatère de tolérance en juin, ce décalage déportant le transit vers « l'avant » atteindra d'abord le quadrilatère de tolérance de décembre avant de pouvoir retrouver celui de juin. Les deux prochains transits se produiront donc en décembre.

Le tableau réalisé sur le tableur représentant une ligne par année, est borné sur une origine correspondant au transit de juin 2004. Pour déterminer les transits de décembre, il convient de

considérer non plus la partie décimale égale à x,00 mais à x,50 en effectuant une moyenne sur deux lignes consécutives, ce qui donne une assez bonne approximation.

Le transit qui suivra celui de juin 2012 se produira en décembre **2117** et le suivant 8 ans après en décembre **2125**.

Or en consultant l'extrait tableur 2, au voisinage de ces dates, on constate que les deux années dont la partie fractionnaire est plus proche de x,50 sont **2125** pour le premier et **2133** pour le second.

En effet, ces deux années possèdent un rapport du nombre d'orbites terriennes sur le nombre d'orbites vénusiennes voisines de x,50 avec une marge de 2 millièmes seulement, alors que 2117 qui est la première année des deux transits effectifs est à 6 millièmes.

Dans un premier temps, j'avais attribué ce décalage à l'imprécision du rapport entre le nombre de jours de l'année terrestre et celui de l'année vénusienne mais les deux décimales retenues pour les deux variables étant elles-mêmes d'une précision équivalente, l'erreur sur le quotient des deux doit rester très faible. Par ailleurs, en poursuivant l'analyse comparative entre la simulation faite sur tableur et les calculs exacts mais infiniments plus complexes fournis par l'Institut de Mécanique Céleste, on constate qu'à la clôture du cycle complet de 243 ans, c'est-à-dire lorsque les transits réapparaissent en juin, le résultat du tableur est à nouveau conforme aux prévisions de l'IMCCE. La cause est manifestement à chercher du côté de l'irrégularité des orbites en raison de leurs excentricités.

Si l'excentricité de l'orbite de Vénus reste faible, celle de la Terre, deux fois et demi plus conséquente, n'est certainement pas étrangère à ce décalage. Le modèle dressé à l'aide du tableur est rigoureusement linéaire comme si les orbites des deux planètes étaient des cercles parfaits, ce qui n'est pas le cas. On comprend fort bien que durant le siècle qui sépare le transit de 2012 pour lequel le modèle du tableur est exact, de celui de 2117, les 65 conjonctions inférieures vont se produire sur un point des orbites qui avance lentement vers le quadrilatère de tolérance de décembre. Ce prochain lieu de transit étant situé au voisinage du périhélie de l'orbite terrestre, il sera atteint plus rapidement que le fonctionnement linéaire du tableur ne le laisse supposer. Ainsi, contrairement aux « prédictions » du modèle du tableur les deux transits se produiront en 2117 et 2125 et non en 2125 et 2133. Voir ci-dessous.

Extrait tableur 2 (Mêmes entêtes de colonnes que pour le tableau précédent)					
104	169,052069425	169,052	2108		
105	170,677570093	170,678	2109	Moyenne entre 172,303 et 173,929 =	
106	172,303070761	172,303	2110	171,4905 (éloigné de x,50 donc pas de transit)	
107	173,928571428	173,929	2111		
108	175,554072096	175,554	2112		
109	177,179572763	177,18	2113		
110	178,805073431	178,805	2114		
111	180,430574098	180,431	2115		
112	182,056074766	182,056	2116	Transit moyenne à (183,682+185,307)/2	
113	183,681575433	183,682	2117	184,4943 = 184,494325767	
114	185,307076101	185,307	2118		
115	186,932576769	186,933	2119		
116	188,558077436	188,558	2120		
117	190,183578104	190,184	2121		
118	191,809078771	191,809	2122		
119	193,434579439	193,435	2123		
120	195,060080106	195,06	2124	Transit moyenne à (196,686+198,311)/2	
121	196,685580774	196,686	2125	197,4983 = 97,498331108	
122	198,311081441	198,311	2126		
123	199,936582109	199,937	2127		

124	201,562082777	201,562	2128		
125	203,187583444	203,188	2129		
126	204,813084112	204,813	2130		
127	206,438584779	206,439	2131		
128	208,064085447	208,064	2132	Moyenne à (2	09,690+211,315)/2 =
129	209,689586114	209,69	2133	210,5023	210,502336448
130	211,315086782	211,315	2134	et pas de trans	sit!
131	212,940587449	212,941	2135		
132	214,566088117	214,566	2136		
133	216,191588785	216,192	2137		
134	217,817089452	217,817	2138		
135	219,44259012	219,443	2139		
136	221,068090787	221,068	2140	Moyenne à	(222,694+224,319)/2
137	222,693591455	222,694	2141	223,5063	223,506341789
138	224,319092122	224,319	2142		
139	225,94459279	225,945	2143		
140	227,570093457	227,57	2144		
141	229,195594125	229,196	2145		
142	230,821094793	230,821	2146		
143	232,44659546	232,447	2147		
144	234,072096128	234,072	2148	Moyenne à	(235,698+237,323)/2
145	235,697596795	235,698	2149	236,51	236,510347129
146	237,323097463	237,323	2150		

2133, pourtant à 2 millièmes de x,50 ne connaîtra pas de transit, alors que 2117 à 6 millièmes de x,50 sera une année à transit. Le modèle est linéaire alors que le phénomène ne l'est pas.

En poursuivant l'analyse nous avons pour la fin du cycle de 243 ans le résultat suivant pour le modèle tableur :

235	381,992656875	381,993	2239	Pas de transit
236	383,618157543	383,618	2240	
237	385,24365821	385,244	2241	
238	386,869158878	386,869	2242	
239	388,494659546	388,495	2243	
240	390,120160213	390,12	2244	
241	391,745660881	391,746	2245	
242	393,371161548	393,371	2246	
243	394,996662216	394,997	2247	Transit
244	396,622162883	396,622	2248	
245	398,247663551	398,248	2249	
246	399,873164219	399,873	2250	
247	401,498664886	401,499	2251	
248	403,124165554	403,124	2252	
249	404,749666221	404,75	2253	
250	406,375166889	406,375	2254	
251	408,000667556	408,001	2255	Transit
252	409,626168224	409,626	2256	
253	411,251668891	411,252	2257	
254	412,877169559	412,877	2258	
255	414,502670227	414,503	2259	
256	416,128170894	416,128	2260	
257	417,753671562	417,754	2261	
258	419,379172229	419,379	2262	

259	421,004672897	421,005	2263	Pas de transit
260	422,630173564	422,63	2264	
261	424,255674232	424,256	2265	
262	425,881174899	425,881	2266	
263	427,506675567	427,507	2267	
264	429,132176235	429,132	2268	
265	430,757676902	430,758	2269	
266	432,38317757	432,383	2270	
267	434,008678237	434,009	2271	Pas de transit
268	435,634178905	435,634	2272	

Le modèle tableur redevient totalement conforme aux prédictions de l'IMCCE avec les écarts minima pour les deux années de transit séparées de 8 ans, 2247 et 2255 avec 3 millièmes pour la première et 1 millième pour la seconde. Ce résultat confirme que le seul défaut du modèle pour des prévisions à court terme (un cycle complet de 243 ans) réside dans sa linéarité pour l'analyse d'un phénomène qui ne l'est pas.

Une bonne solution pour garder tout de même la simplicité de la méthode pourrait consister à établir deux tableaux, le second serait calé sur l'instant initial zéro d'un transit de décembre. Il suffirait de consulter l'un ou l'autre alternativement. Mais il est clair que cette méthode ne peut en aucun cas se substituer aux méthodes de l'IMCCE car elle ne permet évidemment pas de déterminer les heures de début et fin de phénomène, ni même le lieu de la trajectoire apparente du transit sur le disque solaire. Son objet n'est que d'expliquer la fréquence à priori surprenante des transits. Je pense que l'objectif est atteint.